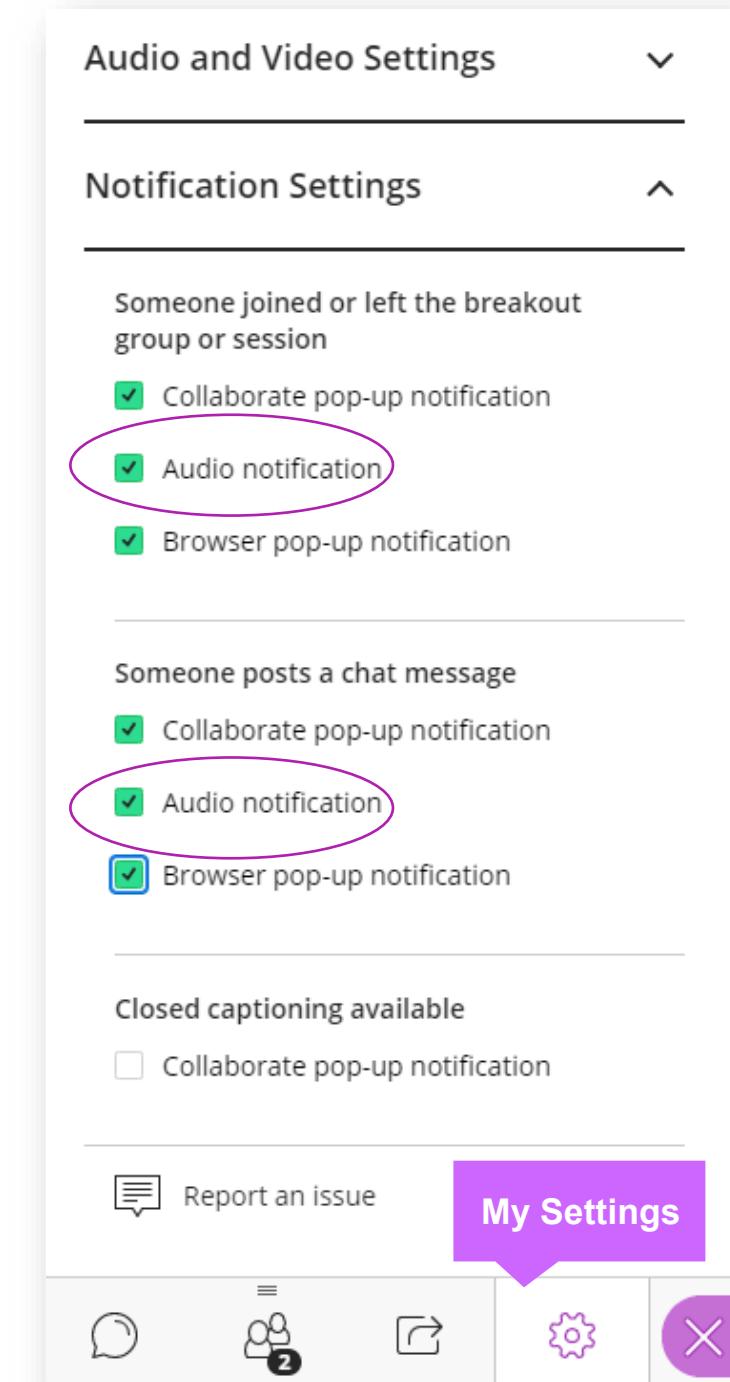


Thank you for joining today's event

Introducing Cambridge Advanced National in Engineering (AAQs)

- The session will begin at 4pm
- Please use Chrome or Firefox as your web browser
- Please log in using your first and last name so that we can send you the materials after the session
- If you have any questions for us, please type them into the chat window


Notification settings

To avoid any distractions during the session, you may find it useful to mute notifications

Select 'My Settings' from the Collaborate panel

Click on 'Notification Settings'
Untick the 'Audio notification' radio buttons

You can also deactivate 'pop-up' notifications from this area

Audio and Video Settings ▾

Notification Settings ▾

Someone joined or left the breakout group or session

Collaborate pop-up notification

Audio notification

Browser pop-up notification

Someone posts a chat message

Collaborate pop-up notification

Audio notification

Browser pop-up notification

Closed captioning available

Collaborate pop-up notification

Report an issue

My Settings

Chat icon (2 notifications)

Participants icon (2 notifications)

Share icon

Settings icon

Close icon

Troubleshooting

Are you having issues with sound?

- **I can't hear anything. What should I do?**
 - The main reason for sound issues is use of an incompatible web browser. To make sure the session runs smoothly, and for the best experience, please use **Chrome** or **Firefox**
- **I can't hear anything. Can I change the volume?**
 - You can adjust your speaker volume in 'My Settings'. Select 'My Settings' from the Collaborate panel (to open, click on the purple arrow icon in the bottom right of the screen). Click 'Audio and Video Settings'
- **I am still having sound issues – what next?**
 - If you continue to have issues with sound, please log out using the **X** button located at the top right of your screen and then re-join Blackboard using the guest link provided in your joining instructions
- **Contact us**
 - If you have tried all the above and are still having trouble using Blackboard, please send us a message via the Blackboard chat window or e-mail networks@ocr.org.uk

Introducing Cambridge Advanced Nationals (AAQs) in Engineering

Howard Lober and Liz Bull | *Subject Advisors*

What does this mean for Cambridge Technicals

AAQs will replace existing Cambridge Technicals in 2025 for the following qualification sizes:

- Certificates will no longer be funded where there is a 180GLH AAQ
- Extended Certificates will no longer be funded where there is a 360GLH AAQ
- Diplomas and Extended Diplomas* continue to retain funding in September 2025

This only applies to the qualifications that already have approved AAQs.

What are Alternative Academic Qualifications (AAQs)?

Designed for students aged 16 to 19 years, AAQs are Level 3 qualifications that can be combined with A Levels, or with themselves, as part of a post-16 study programme.

Cambridge Advanced Nationals, our AAQs, encourage students to:

- develop subject specific key knowledge, understanding, and skills
- think creatively, innovatively, analytically, logically, and critically
- develop valuable communication skills that are important in all aspects of further study and life
- develop transferable skills, such as evaluation, planning, presentation, and research skills
- develop independence and confidence in applying their knowledge and skills

• Q1. – Which Level 3 engineering qualifications or D&T are you currently teaching?

Please use the chat function to answer.

How are Cambridge Advanced Nationals assessed?

Cambridge Advanced Nationals in Engineering are assessed holistically and have a simple and intuitive assessment model, comprising:

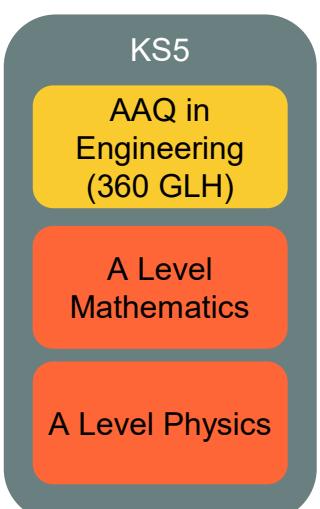
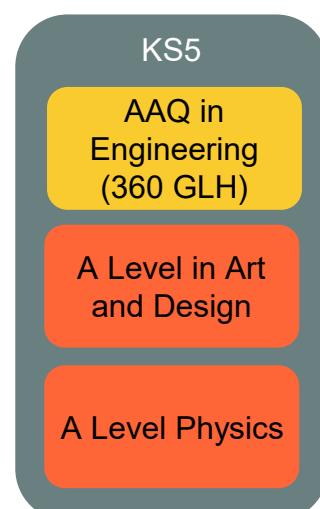
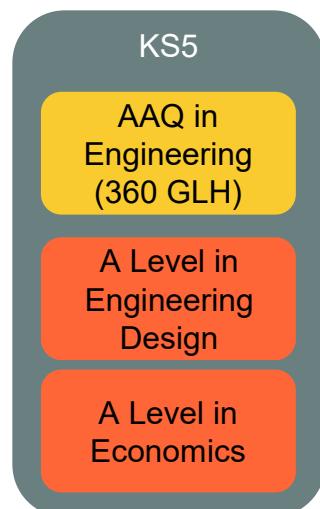
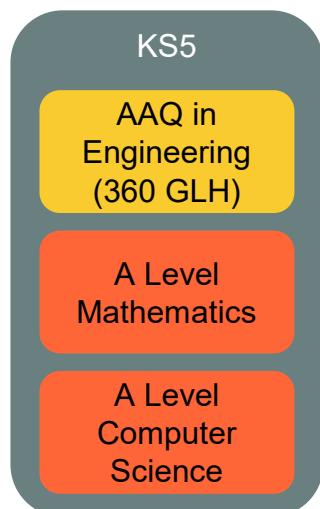
- externally assessed units, which focus on subject knowledge and understanding
- applied or practical non-exam assessment units (NEA)
- optional NEA units to provide flexibility.

Qualification	Size	External assessment (Exam)	Non-exam assessment (NEA)
Certificate	180 GLH	50%	50%
Extended Certificate	360 GLH	40%	60%

Certificate: F130 and F132

Extended: F130, F132, F132 and two optional NEAs

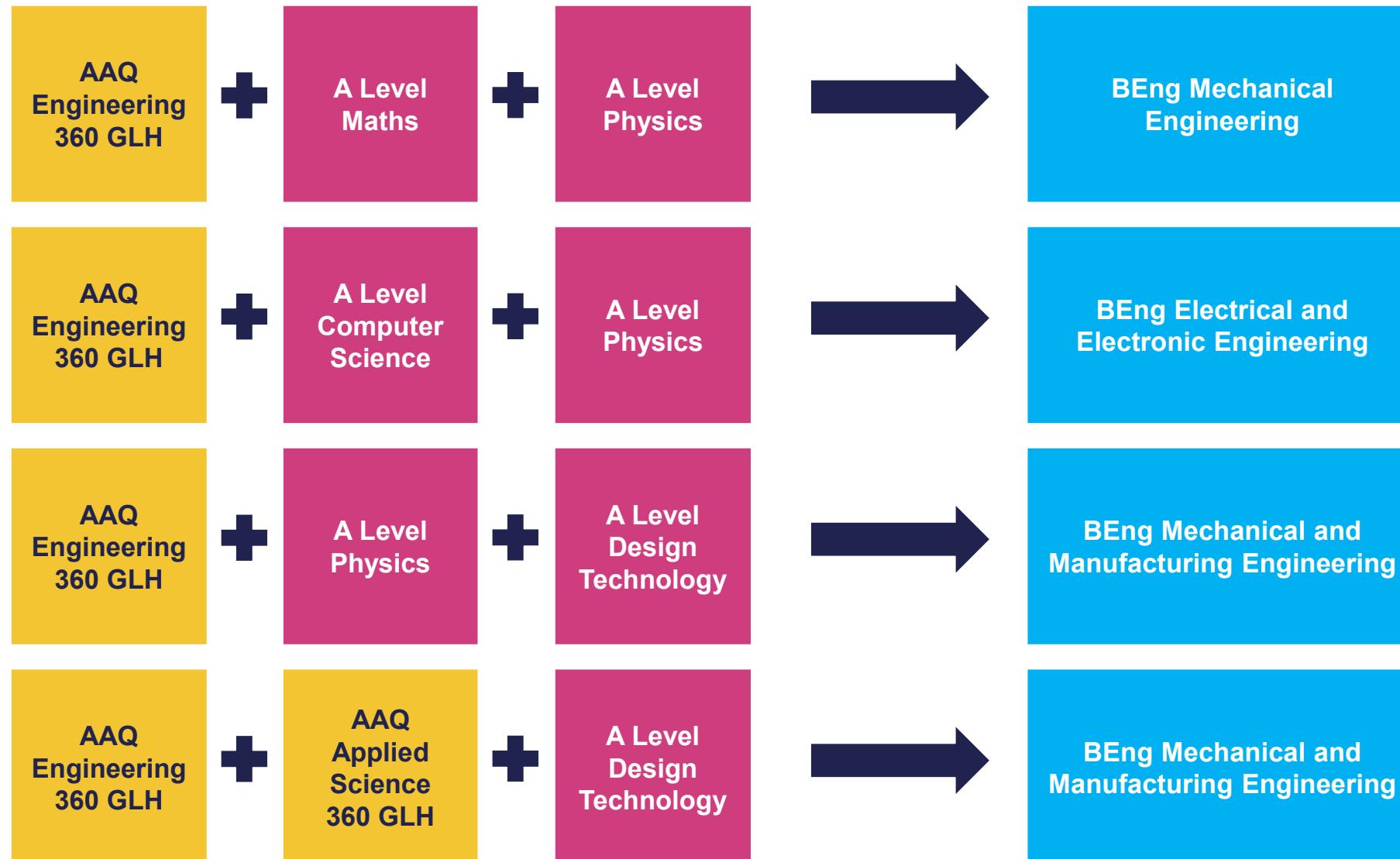
Certificates and Extended Certificates





- Our qualifications have Certificates embedded within them – if a student starts a course late or needs to leave early – they won't leave empty handed
- By completing the relevant units first, you can make sure all students achieve at least an AS Level-sized qualification

Where do they fit into a post-16 programme of study?

Students who want to progress onto further or higher education, but don't want to study only A Levels (or a T Level programme), can choose a [mixed study programme](#).

These can be taken alongside complimentary A Levels to create programme of study. Here are some [examples](#):

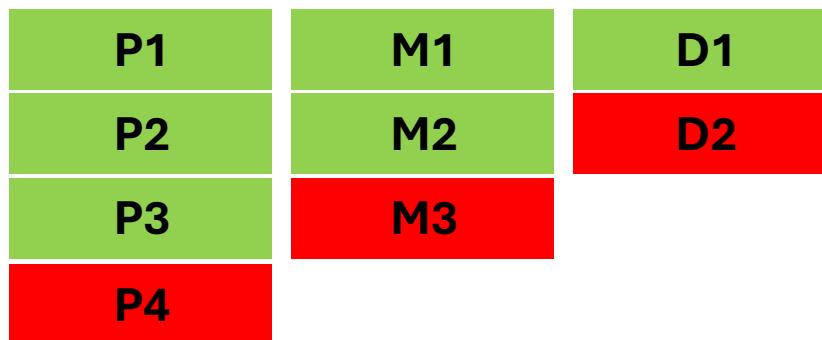

KEY

- = A levels
- = Cambridge Advanced Nationals

Cambridge Advanced Nationals are worth UCAS Tariff points and our cycle 1 qualifications are on the UCAS Tariff points calculator. [Calculate your UCAS Tariff points here](#)

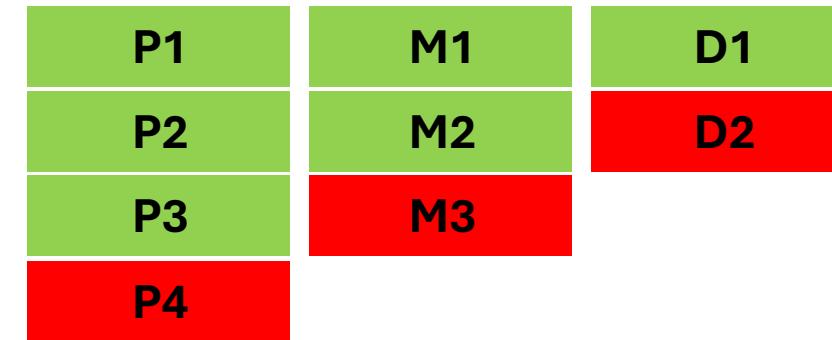
Certificate (150/180 GLH)		Extended Certificate (360 GLH)	
D*	28 points	D*	56 points
D	24 points	D	48 points
M	16 points	M	32 points
P	8 points	P	16 points

Study programme examples



Post-16 mixed study programme examples based on:

- 1 AAQ + 2 A Levels
- 2 AAQs + 1 A Level
- 3 AAQs
- 2 AAQs + 1 Cambridge Technical


Compensation at unit level

Hurdles based model

- In the hurdles-based model above, the student would fail to achieve a pass grade for the unit.

New Advanced National compensation based model

Using our new compensation-based model, the same student would **still** achieve a grade/result for the unit.

Boundaries* for each unit can be found in the specification. The example above is simplified for illustration.

Watch the video: [Cambridge Advanced Nationals – full compensation grading](#)

Full compensation: Exemplar – Computer Aided Design : Merit

Pass	Merit	Distinction
P1: Produce an appropriate 2D sketch using dimensions from the product. (PO4)	M1: Use appropriate variables or equations in a sketch or extrude. (PO2)	D1: Produce a surface model of a component of the design using appropriate tools and techniques. (PO4)

Pass	Merit	Distinction
P9: Set up an appropriate simulation for the assembly, using the operating conditions given. (PO4)	M5: Conclude the results of the simulation of an assembly. (PO3)	D4: Recommend alternative design ideas based on the results of the simulation. (PO3)

P2: Use the pattern tool within a sketch of a component. (PO2)	M2: Use advanced features that involve multiple planes and sketches. (PO2)	D2: Produce a to scale, complete, animated 3D assembly of the physical product. (PO4)
P3: Use a mirror tool in a sketch of a component. (PO2)		
P4: Use extrude and revolve tools in a sketch of a component. (PO2)	M3: Produce an exploded view of a 3D assembly. (PO4)	
P5: Use applied features to add details to a 3D model of a component. (PO2)		
P6: Produce a 3D assembly of at least six interfacing non-standard components. (PO4)		
P7: Use constraints within a 3D assembly that appropriately define the position or movement of the components within the model. (PO2)		
P8: Produce an orthographic technical drawing with more than one view of a non-standard component within a 3D assembly. (PO4)	M4: Apply accurate dimensioning and annotations to a technical drawing. (PO4)	D3: Produce a detailed technical assembly drawing that conforms to engineering drawing standards. (PO4)

Pass	Merit	Distinction
P10: Complete a simulation for the assembly to produce appropriate results. (PO4)		
P11: Create an alternative design for a component of the assembly. (PO4)	M6: Use table-driven features or configurations in designs to create variable designs of a component or assembly. (PO2)	D5 Evaluate whether the alternative design is an improvement using simulation software and design principles. (PO3)

Unit size (GLH)	60	90
Number of pass criteria	11	14
Number of merit criteria	6	8
Number of distinction criteria	5	6
Total number of criteria needed for a unit pass	9	12
Total number of criteria needed for a unit merit	13	17
Total number of criteria needed for a unit distinction	18	23
Total number of criteria	22	28

Total number of criteria: **22**

(11 Pass, 6 Merit, 5 Distinction)

Total required for a Pass: **9**

Total required for a Merit: **13**

Total required for a Distinction: **18**

Q2. If a student achieved 8 pass, 3 merit and 2 distinction criteria what unit grade would they achieve?

Compensation at qualification level

Every criterion that a student achieves will count towards their final qualification outcome.

Hurdles based model

P1	M1	D1
P2	M2	D2
P3	M3	
P4		

In the hurdles-based model above, the student would have achieved a **Pass** at unit level.

New compensation based model

P1	M1	D1
P2	M2	D2
P3	M3	
P4		

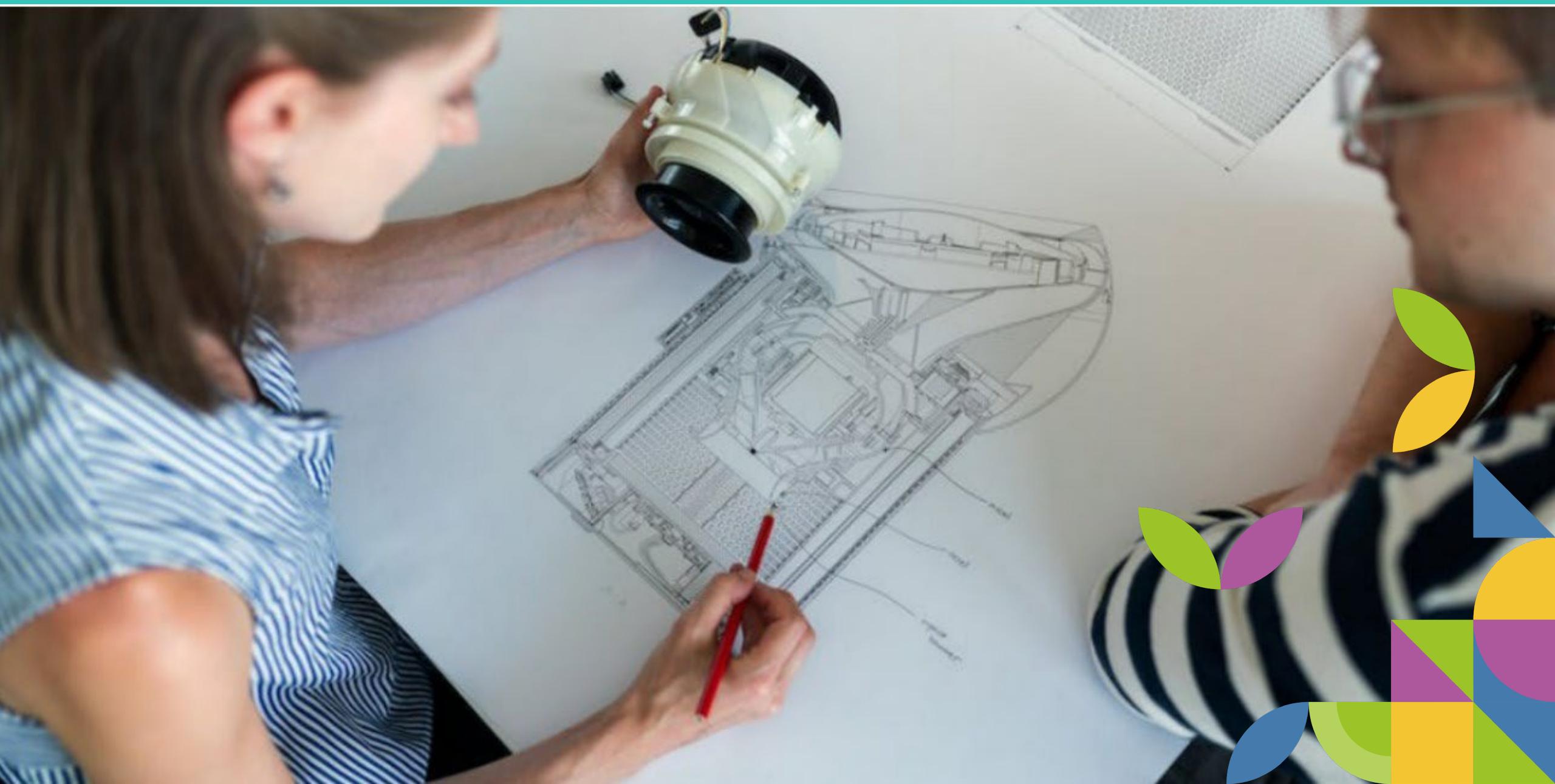
Using our new compensation-based model, M1, M2 and D1 all count towards the final qualification grade, even if a student had not achieved a Merit or Distinction at unit level.

No
criteria/mark
will go to
waste

Boundaries* for each unit can be found in the specification. The example above is simplified for illustration.

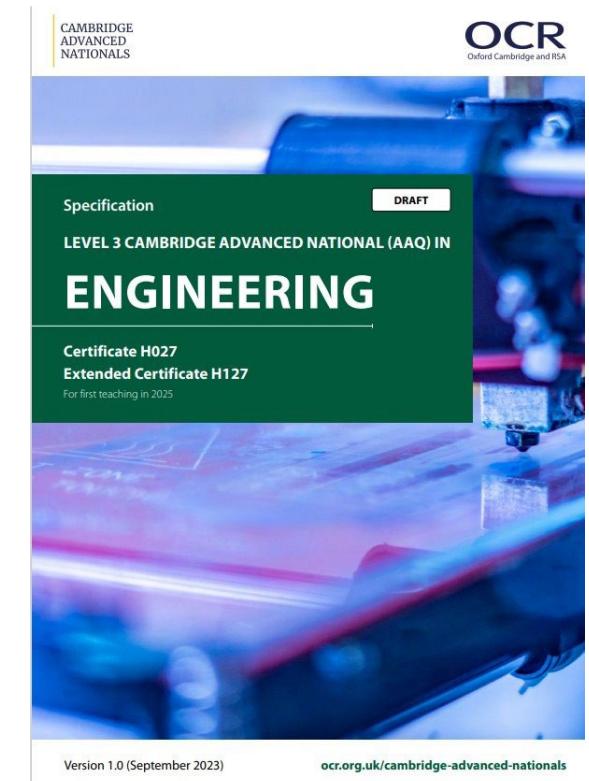
Moderation with OCR

- No Lead Internal Verifier needed and no need to submit plans
- Two windows of submission per academic year that match the academic timetable
- In-person or virtual meetings to discuss internal moderation and review a sample of candidates for each unit
- Constructive feedback from moderators about areas for improvement straight away and in a follow-up report


Interested in joining our
Moderation team?

We have vacancies for
Cambridge Advanced Nationals

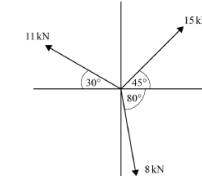
[Find out more and apply](#)


Cambridge Advanced Nationals in Engineering

Cambridge Advanced Nationals in Engineering - Introduction

Engineering is the safe, efficient and sustainable application of science/mathematics knowledge and practical skill to transform ideas and material into products and services that solve problems (as a team).

- These are ‘general engineering’ qualifications
- The **benefit** is better preparation to study a variety of engineering degrees
- It is general engineering, because the mandatory units cover a mix of:
 - mechanical engineering, and
 - electrical/electronic engineering
- Built in lots of **flexibility** to support you and your students depending on:
 - Student needs
 - Teacher’s skills/expertise
 - Centre resources
 - University progression


Qualification Structure

		GLH	180	360	Assessment
	F130 Principles of Engineering	90	M	M	External
★	F131 Material Science and Technology	60	-	M	External
	F132 Engineering in Practice	90	M	M	Internal
★	F133 Computer Aided Design	60	-	O	Internal
★	F134 Programmable Electronics	60	-	O	Internal
★	F135 Mechanical Product Design	60	-	O	Internal
★	F136 Computer Aided Manufacture	60	-	O	Internal
	F137 Electrical Devices and Circuits	60	-	O	Internal

1st NEA released date is June 1st 2025 – and valid for 2 years.

= significant subject crossover with the current L3 technical units.

$$v^2 = u^2 + 2as$$

$$s = ut + \frac{1}{2}at^2$$

$$x + 2y = 6 \quad \dots (1)$$

$$x - y = 3 \quad \dots (2)$$

$$E = \frac{1}{2}CV^2$$

Cambridge Advanced National in Engineering

- Mandatory Units
- Content and Assessment Summary

Section A

Topic Area 1: Mathematics	Topic Area 2: Mechanical principles	Topic Area 3: Electrical / electronic principles
<ul style="list-style-type: none"> 1.1 Application of SI Units 1.2 Mensuration 1.3 Algebra 1.4 Trigonometry 	<p>2.1 Systems of forces</p> <ul style="list-style-type: none"> 2.1.1 Forces 2.1.2 Moments 2.1.3 Systems of coplanar concurrent forces 2.1.4 Systems of coplanar non-concurrent force in equilibrium 2.1.5 Direct loading of engineering components 2.1.6 Shear loading of engineering components 2.1.7 Stress vs strain graphs <p>2.2 Simply supported beams</p> <ul style="list-style-type: none"> 2.2.1 Beams and beam supports 2.2.2 Forces acting on beams 2.2.3 Beam calculations 2.2.4 Bending moment diagrams <p>2.3 Linear dynamic systems</p> <ul style="list-style-type: none"> 2.3.1 Parameters and applications 2.3.2 Interpretation of graphs 2.3.3 Newton's Laws of Motion 2.3.4 SUVAT equations 2.3.5 Energy and power 2.3.6 Friction 2.3.7 Conservation of energy 2.3.8 Momentum 	<p>3.1 Electrical principles</p> <ul style="list-style-type: none"> 3.1.1 Concepts of electricity 3.1.2 Capacitors and capacitance 3.1.3 Direct current networks 3.1.4 Inductors and inductance 3.1.5 Alternating current 3.1.6 Electrical efficiency <p>3.2 Analogue and digital circuits</p> <ul style="list-style-type: none"> 3.2.1 Analogue circuit 3.2.2 Digital logic circuits


Q3. How long is the longest EA?

1 hour 15 minutes // 1 hour 30 minutes // 2 hours // 2 hours 30 minutes

8 This diagram shows a simply supported beam under load. The beam is in static equilibrium.

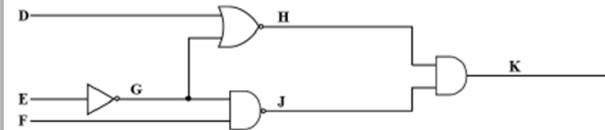

Ignore the weight of the beam.

Diagram not to scale.

Section b

(b) The diagram shows a logic gate circuit.

Complete the truth table for this circuit.

D	E	F	G	H	J	K
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

OCR Level 3 Alternative Academic Qualification Cambridge Advanced Nationals in Engineering

Topic Area 2: Types of material	
Teaching content	Breadth and depth
2.1 Metals	
2.1.1 Ferrous metals (containing iron)	<p>To include:</p> <ul style="list-style-type: none"> □ Cast iron □ Low carbon steel □ Medium carbon steel □ High carbon steel □ Stainless steel
	<ul style="list-style-type: none"> □ Difference between pure metals and alloys □ Relative properties of the ferrous metals to each other and alternative materials □ The relationship between the crystalline structure, lattice structure and the material properties □ Bonding mechanism (metallic) □ Typical applications and why the general properties of the material make it suitable for these applications and why the material is appropriate for the application □ Standard forms of supply: <ul style="list-style-type: none"> • Ingot/billet • Sheet • Bar • Flat stock • Castings
2.1.2 Non-ferrous metals (containing no iron)	<p>To include:</p> <ul style="list-style-type: none"> □ Aluminium and its alloys □ Titanium □ Copper □ Nickel □ Zinc □ Brass Lithium

- F131: Materials science and technology

This unit is assessed by an exam.

In this unit you will learn about different material properties, the types of material and their relative properties, and how these properties can be affected by different processing techniques. Topics include:

- Topic Area 1 Material properties
- Topic Area 2 Types of material
- Topic Area 3 Effect of processing techniques on material properties
- Topic Area 4 Material failure mechanisms and prevention
- Topic Area 5 Sustainable materials and practices in engineering

Section A

2 Which of these is a thermoplastic polymer?

Tick (✓) one box.

Epoxy resin

Polyester resin

Polypropylene

Urea formaldehyde

[1]

3 Which of these describes how an increase in the pressing force during sintering affects the properties of a ceramic component?

Tick (✓) one box.

It decreases the density of the component

It decreases the strength of the component

It increases the density of the component

It increases the mass of the component

Section B

13 Car headlights have a transparent lens on the front. These lenses could be made from glass or polymer.

Discuss which of these materials is the most sustainable choice for this application.

In your answer you **must** write about:

- the **advantages** of using each material for a car headlight lens.
- the **disadvantages** of using each material for a car headlight lens.
- **which** material you would recommend **and** the reasons why.

Unit F132: Engineering in Practice

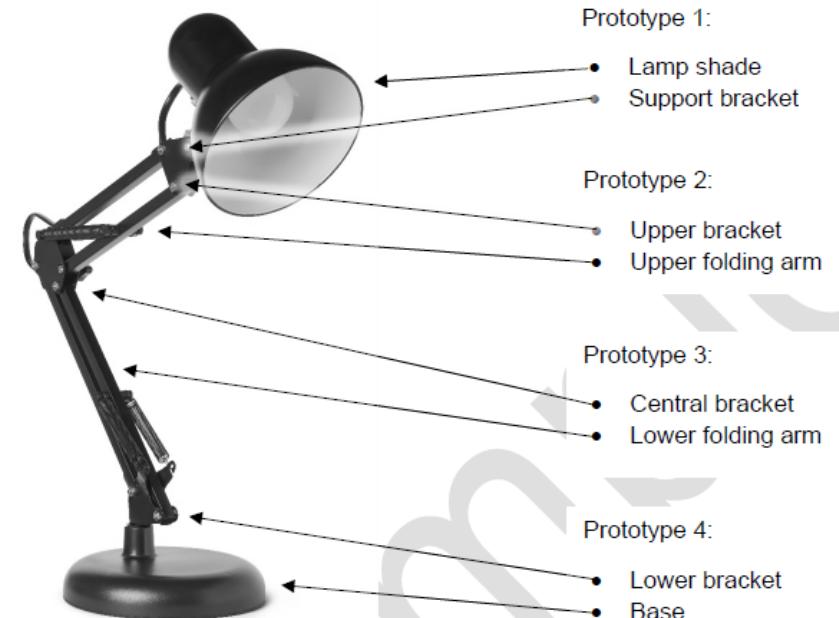
Topic Area 1: Product analysis 1.1 Product analysis of the components	Topic Area 2: Produce CAD mechanical and electronic <u>drawings</u> 2.1 Produce a 2D CAD engineering drawing of a mechanical <u>prototype</u> <ul style="list-style-type: none"> • 2.1.1 Engineering Drawing Standards • 2.1.2 Mechanical features and component types 2.2 Produce a CAD engineering drawing of an electronic <u>circuit</u> <ul style="list-style-type: none"> • 2.2.1 Engineering drawing standards • 2.2.2 Electronic circuit diagrams • 2.2.3 Circuit simulation 	Topic Area 3: Plan the safe manufacture of a mechanical prototype and an electronic circuit prototype 3.1 Plan the safe manufacture of a mechanical <u>prototype</u> 3.2 Plan the safe manufacture of an <u>electronic circuit</u> prototype
Topic Area 4: Manufacturing processes 4.1 Manufacture a mechanical <u>prototype</u> 4.2 Manufacture an electronic circuit <u>prototype</u>	Topic Area 5: Evaluate a <u>prototype</u> 5.1 Evaluate a mechanical <u>prototype</u> 5.2 Evaluate an electronic circuit <u>prototype</u>	

Unit F132: NEA Scenario & Part A Mechanical Prototype

Scenario

You work for a lighting company that manufactures different types of lighting solution. The product you have been asked to investigate is an **angled desk lamp**.

To ensure that a work area is well lit for different purposes, angled desk lamps need their height, angle and tilt to be adjustable.


An example of an angled desk lamp is shown below. The angled desk lamp you are using may look slightly different to this one

Part A: Mechanical Analysis, Drawing and Prototype Manufacture

The non-standard components in the angled desk lamp have been grouped together as shown in Fig. 1.

Fig. 1

Each prototype (1, 2, 3 and 4) may also contain relevant standard components, such as nuts and bolts.

You will be told which **one** of these prototypes to use in your assignment.

Task 2:

Produce two-dimensional (2D) Computer Aided Design (CAD) mechanical drawings

Topic Area 2 is assessed in this task.

Having carried out your product analysis, you now need to produce 2D CAD engineering drawings of the prototype you are going to manufacture.

The task is:

Use a CAD software package to produce 2D CAD engineering drawings of the prototype which follow standard drawing conventions.

Your evidence **must** include:

- Annotated screenshots of CAD software being used to produce the engineering drawings.
- Final 2D CAD engineering drawings in a pdf file format.

Use the assessment criteria below to tell you what you need to do in more detail.

Pass	Merit	Distinction
P3: Produce an appropriate third angle orthographic projection of the non-standard component(s) in the prototype using engineering drawing standards.	M2: Produce an appropriate sectioned/detailed view of one non-standard component from the prototype using engineering drawing standards.	D1: Produce an appropriate isometric assembly projection for the prototype using engineering drawing standards.

Unit F132: Resource Guidance

Cambridge Advanced National in Engineering
**Resource Guidance for F132: Engineering in Practice –
The Mechanical Prototype**

Unit F132: NEA Part B Scenario for the Electronic Prototype

Scenario:

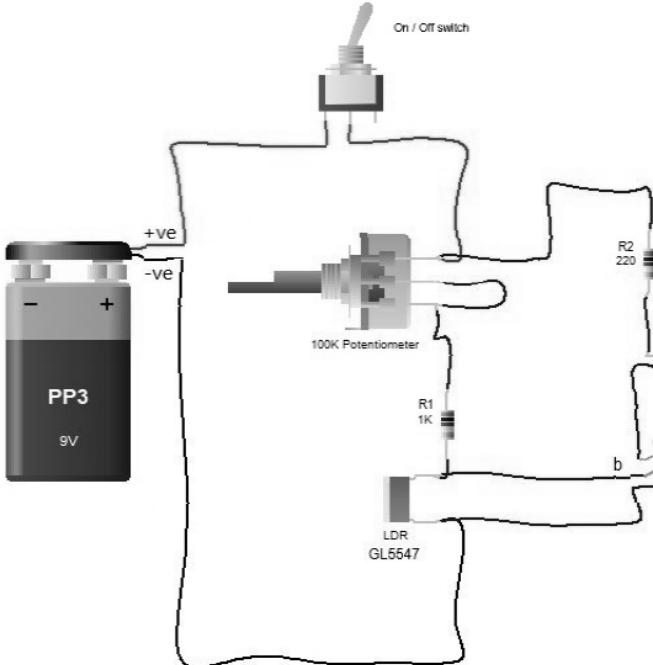
Part B: Electronic Circuit Analysis, Drawing and Prototype Manufacture

The lighting company want to improve the angled desk lamp by making it automatically turn the light on or off depending on the ambient light level.

They want you to make a prototype of the electronic circuit using a Light Emitting Diode (LED).

Important

Part A and Part B are independent activities and should **not be integrated together.**


Unit F132: NEA Part B Task 6

Task 6

Produce a CAD drawing and simulate an electronic circuit.

Topic Area 2 is assessed in this task.

This is a picture of the electronic circuit needed to achieve the improvement. The LED should turn on when the ambient light falls below a threshold set by the potentiometer. The LED should turn off when the ambient light goes above this threshold.

The task is:
Produce a CAD engineering drawing of the electro conventions.
Simulate the circuit in operation so you can complete Appendix A to record your simulated values.

Parameter	Explanation
$V_{R2\text{Off}}$	Voltage across R2 when the LED is off
V_{LDROff}	Voltage across LDR when the LED is off
I_{off}	Total current through the circuit when the LED is off
$V_{R2\text{On}}$	Voltage across R2 when the LED is on
V_{LDROn}	Voltage across LDR when the LED is on
I_{on}	Total current through the circuit when the LED is on

Your evidence must include:

- Final CAD drawing of the electronic circuit diagram.
- Annotated screenshots of the simulation of the electronic circuit in operation.
- A completed test table (Appendix A) showing simulated values.
- Annotated screenshots of any simulated testing completed, including connections of virtual test equipment and readings.

Use the assessment criteria below to tell you what you need to do in more detail.

Pass	Merit	Distinction
P8: Produce a CAD drawing of the electronic circuit diagram using engineering drawing standards.		
P9: Simulate the electronic circuit to demonstrate its correct operation.		D4: Use correct methods to measure appropriate values and voltages from the simulated circuit.

Assessment Guidance

This assessment guidance gives you information to meet the assessment criteria. There might not be additional assessment guidance for each criterion. It is only given where it is needed. You must read this guidance before you complete your evidence.

Assessment Criteria	Assessment guidance
P8	<ul style="list-style-type: none">The circuit diagram must be an accurate representation of the required circuit and be drawn to meet current engineering drawing standards (e.g. BS 60617).
P9	<ul style="list-style-type: none">Students must use simulation to show the function of the circuit to meet the stated requirement(s).
D4	<ul style="list-style-type: none">Students need to use correct testing methods and virtual test equipment to generate the results required.

Assessment at a glance – Extended Certificate optional units

Unit	Topic Areas	Assessment details
F133 Computer Aided Design (CAD)	<ul style="list-style-type: none"> Produce 3D models using Computer Aided Design (CAD) Create a 3D assembly of multiple components within a CAD software Creating technical drawings from 3D models Simulations in 3D modelling 	Assignment 60 GLH OCR-set assignment Centre-assessed and OCR-moderated
F134 Programmable electronics	<ul style="list-style-type: none"> Microcontrollers and microcontroller systems Using input and output devices and other electronic components in microcontroller systems Designing, developing, and assembling microcontroller-based programmable systems Programming microcontrollers 	Assignment 60 GLH OCR-set assignment Centre-assessed and OCR-moderated
F135 Mechanical product design	<ul style="list-style-type: none"> Product analysis Product design 	Assignment 60 GLH OCR-set assignment Centre-assessed and OCR-moderated
F186 Computer Aided Manufacture (CAM)	<ul style="list-style-type: none"> Subtractive and additive Computer Aided Manufacturing (CAM) processes Three-dimensional (3D) Computer Aided Design (CAD) modelling of prototype components Manufacturing prototype components using subtractive processes Manufacturing prototype components using additive processes Evaluating prototype components manufactured using subtractive and additive manufacturing processes 	Assignment 60 GLH OCR-set assignment Centre-assessed and OCR-moderated
F136 Electrical devices and circuits	<ul style="list-style-type: none"> Power sources Semiconductor devices Analogue circuits Digital circuits 	Assignment 60 GLH OCR-set assignment Centre-assessed and OCR-moderated

Unit F133

OCR Level 3 Alternative Academic Qualification Cambridge Advanced National in Engineering

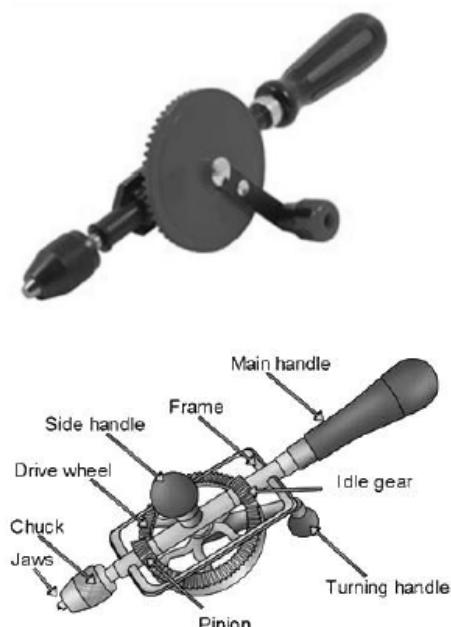
Tasks for students and assessment criteria

Unit F133: Computer Aided Design (CAD)

Scenario Title: Hand drill

Valid for assessment from September 20XX to 20XX.

For use by students beginning the qualification in September 20XX.


Scenario

The product is a hand drill.

You are a junior design engineer for OCR Tools. They want you to produce and optimise a three-dimensional (3D) Computer Aided Design (CAD) assembly of a hand drill.

An example of a hand drill and associated components is shown below.

P2: Use the pattern tool within a sketch of a component. (PO2)	M2: Use advanced features that involve multiple planes and sketches. (PO2)	D2: Produce a to scale, complete, animated 3D assembly of the physical product. (PO4)
P3: Use a mirror tool in a sketch of a component. (PO2)	M3: Produce an exploded view of a 3D assembly. (PO4)	
P4: Use extrude and revolve tools in a sketch of a component. (PO2)		
P5: Use applied features to add details to a 3D model of a component. (PO2)		
P6: Produce a 3D assembly of at least six interfacing non-standard components. (PO4)		
P7: Use constraints within a 3D assembly that appropriately define the position or movement of the components within the model. (PO2)		
P8: Produce an orthographic technical drawing with more than one view of a non-standard component within a 3D assembly. (PO4)	M4: Apply accurate dimensioning and annotations to a technical drawing. (PO4)	D3: Produce a detailed technical assembly drawing that conforms to engineering drawing standards. (PO4)

Unit F135

OCR Level 3 Alternative Academic Qualification Cambridge Advanced National in Engineering

Tasks for students and assessment criteria

Unit F135: Mechanical Product Design

Scenario Title: Toaster redesign

Valid for assessment from September 20XX to 20XX.

For use by students beginning the qualification in September 20XX.

Scenario

You work for a product design company as a mechanical product designer. A client has asked you to redesign an existing product.

The product is a budget two-slice toaster. An example of a two-slice toaster is shown below. The two-slice toaster that you are using may look slightly different to this one.

Use the assessment criteria below to tell you what you need to do in more detail

Pass	Merit	Distinction
P1: Describe the function(s) of the product. (PO2)	M1: Explain how the operating principles enable the product to function. (PO2)	
P2: Safely disassemble an engineered product into its main components. (PO4)	M2: Produce information about how to methodically disassemble the product. (PO4)	D1: Produce clear guidance to allow reassembly of the product by a third party. (PO4)
P3: Identify the materials used to make two different non-standard components (PO4) (Identification through doing tests)		D2: Analyse the materials and processes used for two non-standard components, including how you were able to identify them. (PO3)
P4: Identify two DFMA related design features from the components in P3. (PO2)		

Sample OCR-set assignment Unit F135: Mechanical product design

Valid for assessment until 20XX.

Version 3: (January 2025)

Unit F136

Tasks for students and assessment criteria

Unit F136: Computer Aided Manufacture (CAM)

Scenario Title: Stepper motor mount bracket OR Hose barb fitting

Valid for assessment from September 20XX to 20XX.

For use by students beginning the qualification in September 20XX.

Scenario

You are an engineer with Cambridge Engineering, a small manufacturing company.

A client wants to investigate the use of both additive and subtractive CAM processes to manufacture prototypes of some new components.

Your supervisor has asked you to choose either Component A or Component B to work with.

The client has placed an order to manufacture two versions of one prototype component using two different Computer Aided Manufacturing (CAM) processes.

The component to be manufactured is **either**:

- Component **A**: a stepper motor mount bracket, **OR**
- Component **B**: a hose barb fitting.

An orthographic engineering drawing of Component A and Component B is given in Appendix A. For both components:

- the client has specified four functional dimensions (shown in **bold** text) that **must** be kept
- other remaining dimensions can be adapted as part of the design for manufacturing process and/or you will need to decide upon yourself.

Use the assessment criteria below to tell you what you need to do in more detail.

Pass	Merit	Distinction
P1: Describe how the component can be manufactured using subtractive CAM processes. (PO2)	M1: Explain what sustainability considerations should be applied in the manufacture of the component using subtractive and additive CAM processes. (PO2)	D1: Evaluate the suitability of subtractive and additive CAM processes to manufacture the component. (PO3)
P2: Describe how the component can be manufactured using additive CAM processes. (PO2)		P2: Analyse appropriate microcontroller systems and programming languages for the application. (PO3)

Unit F134

Tasks for students and assessment criteria

Unit F134: Programmable Electronics

Scenario Title: Roadwork traffic light system

Valid for assessment from September 20XX to 20XX.

For use by students beginning the qualification in September 20XX.

Scenario

You are a junior programmable electronics engineer working for the local council.

The council are to complete roadworks which will require a temporary traffic light system to be put in place to ensure the safe movement of vehicles through the roadworks.

The system will have 2 sets of traffic lights, one at each end of the roadworks. The road is reduced to a single lane while the roadworks take place, so the sets of traffic lights need to let traffic through at one end and stop it at the other.

An example of a traffic light system is shown below.

Use the assessment criteria below to tell you what you need to do in more detail.

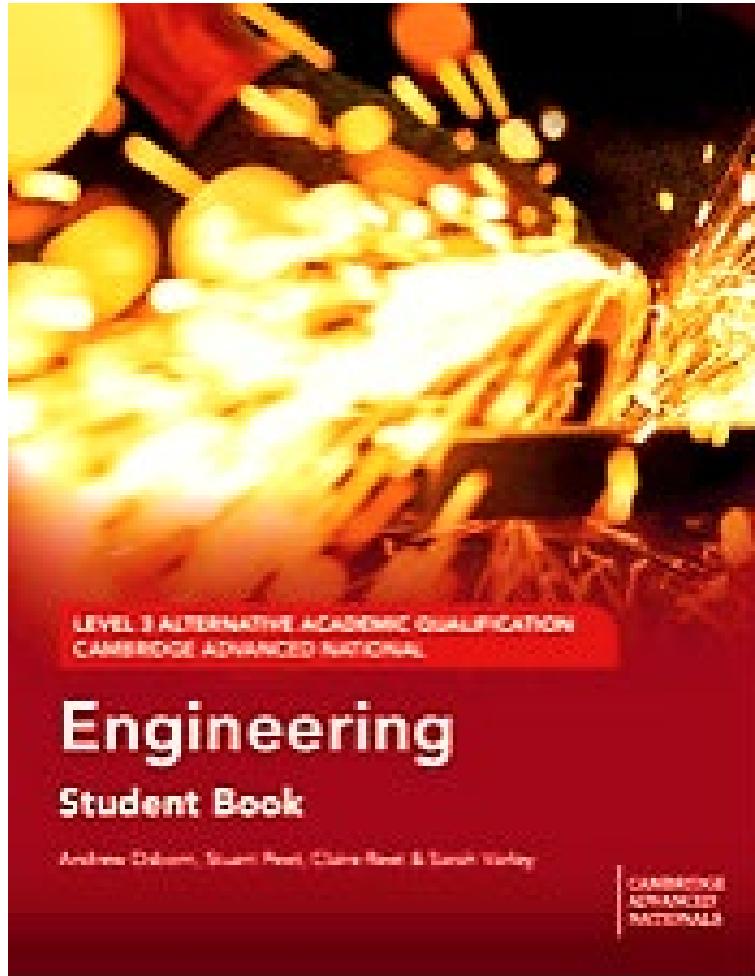
Pass	Merit	Distinction
P1: Analyse appropriate microcontroller types and casings for the application. (PO3)	M1: Justify the selection of a suitable microcontroller type, casing, system and programming language. (PO3)	D1: Explain how the selected microcontroller type, casing, system and programming language could be future proofed against new requirements. (PO2)
	P2: Analyse appropriate microcontroller systems and programming languages for the application. (PO3)	

Support Package for Engineering

Teaching & Learning	Assessment	Training
<ul style="list-style-type: none"> • Textbook • Switching Guide • Mapping Guide • Getting Started Guide • Curriculum Planner • Scheme of Work • E-Learning course 	<ul style="list-style-type: none"> • Annotated Sample Assessment Materials • Assessment Story • Practice Papers • Candidate Style Answers (EA) • Candidate Style Work (NEA) • NEA Guide • Student Guide 	<ul style="list-style-type: none"> • Choosing AAQs and understanding the compensation model • Starting to Teach • Ask the SA • Ask the Moderator • Preparing for the Exam • Preparing for the NEA • Exploring the exam (<i>after live examination series</i>) • Exploring the NEA (<i>after live examination series</i>) • Enhance your teaching

Website - [OCR Level 3 AAQ Cambridge Advanced Nationals in Engineering](https://www.ocr.org.uk/qualifications/teach-cambridge/)

Teach Cambridge - <https://www.ocr.org.uk/qualifications/teach-cambridge/>


Key support – Teaching and Learning

Support Resource	What is it?
Switching guide	Offers a guide for moving to OCR from another awarding body. The Switching guide contains information on the differences between the specifications, including at the specification point level, differences between the assessment models, and some next steps that can be taken as you prepare to teach with OCR
Mapping guide	Offers a guide to help you move forward from your current OCR qualification to a new one
Curriculum planner	Suggested ways of delivering the specification content across a particular time frame
Scheme of work	A scheme of work that outlines the teaching of the specification over a 2-year course. Breaks down the specification into specification point, guided learning hours, earning intentions, teaching ideas, subject knowledge and further support.
Textbook	Print and digital publication covering the mandatory and optional units.
E-Learning course	A course to support the delivery of the Cambridge Advanced Nationals

Key support – Assessment

Support resource	What is it?
Sample Assessment Material	A sample exam paper to ensure familiarity with the layout of the exam
Annotated Sample Assessment Materials	<i>'Exploring our exams: a guide to our sample assessment material'</i> Understanding the format and structure of the exam, an insight into the assessment objectives and an explanation of the sample assessment
Assessment Story	<i>'Understanding the assessment – examined and moderated'</i> Understanding the rationale for the assessment strategy
Candidate style answers	Answers produced to offer teachers an insight into how the assessment objectives are applied in the examined unit.
Practice papers	Practice papers to help students prepare for the examined units
NEA Guide	Guidance to support the delivery, internal assessment and submission of work
Candidate style work	For use by teachers only, with the purpose of helping you mark your candidates' work. We will provide a range of example pieces of work with a Principal Moderator commentary measuring the work against the NEA requirements.
Student guide	Guides for parents and students on key points about their assessments.

Textbook Publication

Planned publication date for all units May 2025 – August 2025

*mandatory units in print, optional units will publish in July and August in a digital format.

Click here to pre-order : [Engineering Student Books](#)

<https://ukresources.cambridge.org/cambridge-advanced-nationals>

Order a free sample of the Engineering textbook today.

Benefits to teachers

- Access to on-demand and live training throughout the year
- Access to teaching materials and assessment support
- All the benefits of our collaborative and constructive moderation processes
- Deliver exciting, relevant and up-to-date content that students will enjoy

Benefits to students

- Reliable assessments – papers that are accessible and ramp-up, every question can be attempted
- Minimum time sat in exam halls – under 3 hours across 2 papers
- Chances to resit papers in January and June: 3 attempts in total
- Resubmit coursework in the next appropriate window
- No more hurdles – every single mark counts towards their final grade
- Content is relevant, up-to-date, and career-orientated

Support for all OCR teachers

- Free ***My Cambridge*** login for all teachers (and technicians) via your exams officer that gives you access to:
 - Teach Cambridge: teaching resources, schemes of work, assessment materials and set assignments
 - OCR Train: our on-demand training and standardisation platform
 - Interchange: request your moderation visits during the two windows
 - Active Results: compare your school's results against national averages and drill down into item-level and candidate-level analysis
 - Access to Scripts: see candidate papers after results day
 - Submit for Assessment: digital upload of candidate work for moderation
 - ExamBuilder: create assessments from our large bank of question from the Cambridge Technical course, as well as access to all A level and GCSE questions

Why choose Cambridge Advanced Nationals?

Full compensation grading: Students are always rewarded for their demonstrated abilities - every single mark your students earn will directly contribute to their final grade. [No mark will go to waste](#).

Every mark matters: Gone are the days of hurdle elements in units. If a student meets all but one Pass criterion and some Merit criteria, they won't face failure. Our approach [compensates for performance at both the unit and qualification levels](#), ensuring fairness and encouragement for every student.

Features teachers love and more: Cambridge Advanced Nationals incorporate the popular features from our Cambridge Technicals, including visiting moderation, a blend of examination and coursework units, and we're keeping the well-recognised Pass, Merit, Distinction grade scale. Plus, you'll continue to benefit from our range of comprehensive support and resources.

Pathways to university: Designed in collaboration with teachers and universities, Cambridge Advanced Nationals equip students with a well-rounded skill set for today's undergraduate studies as part of a [Level 3 programme of study](#).

Complementary practical application: Designed to be taken alongside A Levels, Cambridge Advanced Nationals seamlessly [complement a mixed study programme](#) while maintaining a strong focus on the practical application of skills and knowledge - a valuable supplement to A Levels, enabling clear progression to university.

Contact details – do stay in touch

d&t@ocr.org.uk
engineer@ocr.org.uk
support@ocr.org.uk

01223 553998

@OCR_DesignTech

Liz Bull:
Subject advisor

